全面介绍关于农业市场动态,农业企业新闻,农业种植行业有关资讯
手机访问 http://m.muyeseed.com

射频半导体(硅基氮化镓)器件都有哪些应用?

一、射频半导体(硅基氮化镓)器件都有哪些应用?

射频半导体(硅基氮化镓)器件主要应用在网络及通信等方面,除此之外还有以下应用:

1.微波烹饪

2.汽车照明和点火

3.等离子照明

因为射频半导体(硅基氮化镓)器件其所具有的精准以及稳定的性质特点,除了以上提到的之外,也被应用于准确切除以及加热干燥等方面,比如农业的同步稳定干燥等。资料来源----MACOM GaN

二、相比LDMOS及碳化硅基,硅基氮化镓在无线通信方面的能效怎样?

与LDMOS相比,硅基氮化镓提高了 10% 能效,并且结合多个性能优势,提供更佳更远的路径;另一方面,与碳化硅基氮化镓相比,硅基氮化镓的规模生产结构优化 。适当利用,10% 的能效提升即可极大程度上减少无线网络运营商的基站运营成本。据半导体供应商 MACOM 的有关估计,假设平均能效为 0.1 美元/千瓦时,仅将一年内部署的宏基站转换为硅基氮化镓,就可节省超过 1 亿美元电费。

通过将LDMOS半导体器件转换为硅基氮化镓功率放大器后,不仅可以提高能效,同时也减少了二氧化碳的排放——这不管是无线营运商还是客户,都是令人振奋的。

三、硅基氮化镓LED发光技术是什么?具体说明!

在电流的激发作用下,电子越过禁带在低能级和空穴复合,多余的能力以光子的形式释放,即发光

四、氮化镓有哪些特点?可以制造哪些器件?

氮化镓有哪些特点?

氮化镓号称第三代半导体核心材料。相对硅而言,氮化镓拥有更宽的带隙,宽带隙也意味着,氮化镓能比硅承受更高的电压,拥有更好的导电能力。简而言之两种材料在相同体积下,氮化镓比硅的效率高出不少。如果氮化镓替换现在所有电子设备,可能会让电子产品的用电量再减少10%或者25%。

可以制造哪些器件?

太远离生活的产品不说,采用氮化镓为材料基础做出的充电器,能够实现更好的功率,带来更小的体积。早期的氮化镓材料被运用到通信、军工领域,随着技术的进步以及人们的需求,氮化镓产品已经走进了我们生活中,在充电器中的应用也逐步布局开来。

氮化镓是目前全球最快功率开关器件之一,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的变压器,让充电器可以有效缩小产品尺寸。比如导入USB PD快充参考设计,使目前常见的45W适配器设计可以采用30W或更小的外形设计。

五、氮化镓功率器件有哪些,分别有什么特点?

氮化镓(GaN)功率器件目前主要主要分为Si基和SiC基两种,SiC基的GaN的供应链可靠性并不如LDMOS高,这是因为SiC基的生长良率并不高,此外,SiC基的工艺很难做到6寸晶圆上生长,工艺极其复杂。目前大范围在射频应用上的GaN器件都是在4寸晶圆上做出来的SiC基GaN。而纯Si基方面,MACOM的纯硅基GaN目前已可以实现在6寸晶圆上生长,甚至将实现在8寸晶圆上进行生长。这样从而GaN器件就有了媲美LDMOS的成本优势,实现规模量产,进而可以在成本上与已经有成熟产业链的LDMOS进行比较。

六、相比碳化硅基氮化镓及砷化镓,硅基氮化镓半导体材料前景如何?

硅基氮化镓半导体材料相比碳化硅基氮化镓及砷化镓,在实际案例中,目前还没有被广泛应用,但是因为性能优异,所以以后有望普及。

例如相比碳化硅基的氮化镓,硅基的氮化镓比碳化硅基的氮化镓在线性度上有不同的显现,可对基站的复杂信号进行数字调制。

在产能上,碳化硅基由于材料特性,不支持大的晶圆,而硅基氮化镓材料支持大晶圆的特性,有利于电路的扩展和集成,未来有可能在相关领域取代碳化硅基。

另外相比砷化镓,氮化镓拥有高一些的饱和功率,所以当作低噪声放大器使用时,适合雷达等应用领域,可以省略掉限幅器,限幅器的主要作用就是防止高功率干扰信号对放大器带来损失。所以简化的系统噪声系数会好于砷化镓,除此之外混频器等应用中,更好的动态范围也比砷化镓合适。

综合以上所述,从某些方面来说,硅基氮化镓半导体材料有一定优异性,未来有望被广泛应用。

下一篇:硅胶价格行情
上一篇:返回栏目

我要留言(留言后专人第一时间快速对接)

已有 1826 企业通过我们找到了合作项目

姓 名:

联系电话:

留言备注:

首页 |网站简介|网站声明|正在咨询|联系我们 |网站地图